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Abstract-In this paper the dynamical theory of linear nonmagnetizable piezoelectric micropolar
thermoe1asticity is considered. Using a tensorial description, basic concepts such as admissible
process, dynamical nonmagnetizable piezoelectric micropolar thermoelastic process and mixed
problem are defined. A basic result is proved and, by using it, some reciprocity relations are deduced.
The results obtained here allow us to prove both an uniqueness theorem of a solution of the mixed
problem and a Green representation integral formula for the same solution. © 1997 Elsevier Science
Ltd. All rights reserved.

l. INTRODUCTION

In this paper we will be interested in the correlations between the entities describing
both mechanical and thermal properties of a solid, and those showing its electromagnetic
behaviour. Polarizable solid materials may, when deformed, exhibit electrical phenomena.
In some types of crystals an application of internal forces as body forces, couple-body
forces and heat sources, as well as the presence of forces and a heat flux on their surface
produces electric polarization, Usually, the presence of an electric field creates a magnetic
one that it interacts with. This phenomenon is called the direct piezoelectric effect (Novo­
zhilov and Yappa, 1981). We can also have the converse piezoelectric effect consising of
the appearance of stresses and thermal variations due to an applied electric field in a crystal
solid. Such phenomena when they occur are always associated with the anisotropic solids.
A piezoelectric field may be produced under small deformations of anisotropic solids.
Isotropic solids do not exhibit this property. Because of their importance in engineering
applications, the classical theories for these effects have become highly specialized disci­
plines. A short history and a comprehensive list in this area until the middle of the 20th
century may be found in Cady (1946). Any such theory must be based on simultaneous
application both of the principles of mechanics and of electromagnetism.

The piezoelectric effects in an anisotropic Hookean body have been known for a long
time. Theoretical studies about the phenomenon of piezoelectricity were given at the
beginning of the 19th century and since these have been elaborated and many studies in
correlation with the theories of continuum mechanics have been developed (see, for exam·
pIe, Voigt, 1887; Maugin, 1988). Many special problems of piezoelectricity have been
solved by various authors. We quote here Brzezinski (1978), Nowacki (1978), Ie~an (1989,
1990) and Wang (1992).

Numerous anomalies in the behaviour of some crystals, quartz and diamond and
others, in piezoelectric effects, proved the necessity ofconstruction of an appropriate theory.
Precisely, the behaviour ofpiezoelectric crystals shows that the number ofmaterial constants
in Voigt's theory is not sufficient. Starting from a theory of a hemitropic Cosserat body
exhibiting anisotropy, Nowacki (1986) elaborated a unified mathematical theory of the
piezoelectricity including thermal and electromagnetic effects, known as the linear theory
of piezoelectric micropolar thermoelasticity for inhomogeneous and anisotropic bodies.

Here, we consider the dynamic theory of linear nonmagnetizable piezoelectric micro­
polar thermoelasticity ofthe anisotropic and inhomogeneous bodies. A tensorial description
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is used, as in Gurtin (1972) and Carlson (1972), which, in our opinion, is very convenient
to prove many results concerning reciprocity relations, uniqueness, variational principles
et al.

In Section 2 we give some mathematical preliminaries necessary for a tensorial descrip­
tion of the above mentioned theory. Tensorial functions, inner product, convolution,
Hamilton's operator and some properties concerning these notions are presented.

As in a previous paper (Cniciun, 1994), in Section 3 we define the admissible process
in the dynamic theory of linear nonmagnetizable piezoelectric micropolar thermoelasticity
for an anisotropic and inhomogeneous body occupying a region B of space. The fun­
damental notion of this theory is that of dynamic nonmagnetizable piezoelectric micropolar
thermoelastic process in an inhomogeneous and anisotropic body.

In Section 4, the mixed problem of this theory is defined. Theorem 1 gives equivalent
forms of some basic equations governing this theory.

In Section 5, a very important result, based on the papers of Ie~an (1989; 1990), is
proved. Note that the result established in Lemma 1 may be used to prove a uniqueness
theorem of the solution of the mixed problem (Cniciun, 1994).

Then, this result is successfully used in Section 6 to prove reciprocal theorems. The
special cases of inhomogeneous initial conditions is considered. We note that the reciprocity
relations established here could be used to give Green representation integral formula for
a solution of the mixed problem.

2. SOME MATHEMATICAL PRELIMINARIES

We shall consider an inhomogeneous and anisotropic body that, beginning at time
t = 0, occupies the regular region B of the Euclidian three-dimensional space whose associ­
ated vector space is [R3. The region B is bounded by the piecewise smooth closed surface
aBo We denote by n the outward unit normal in a point of aBo In a linear theory, the motion
of a body is referred to a fixed system of rectangular Cartesian axes Ox i , whose unit vectors
are eh i = 1-3. The time interval [0, to) will be denoted by I. We will meet here functions
depending on the position vector x = (x], Xl, X3) of a point in jj = B u aB and on time tin
I, whose domains of definition may be the Cartesian product jj x I or one of the sets
B x (0, to) and aB x I. The values/ex, t) of a function/may be in the set of real numbers [R

or in the linear space Lp of all p-tensors, where Lp = [R3 ® [R3 ® ... (8) [R3, p-times, and ®
stands for the tensorial product. It is also possible to have functions depending only on x.
Therefore, in this paper we will use both real (scalar) and tensorial functions. A tensorial
function having the values in Lp will also be named a p-order tensor. We shall employ the
usual summation and differentiation conventions: Latin subscripts are understood to range
over the integers 1-3; the summation over repeated indices is implied; subscripts preceded
by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate; a superimposed dot designates partial differentiation with respect to t; and a
centred dot between two p-order tensors shows that the inner product in Lp is effected.

For a tensorial function with values in Lp we write/;, i, ...i
p

for its components. The inner
product of the two p-order lex, t) and g(x, t) is given by

(1)

The convolution of two p-order tensors / and 9 is the function / * 9 : jj x 1-+ [R, defined by:

(f*g)(x,t) = I/(X,t-L).g(X,L)dL.

It is possible that in the place of/is a scalar function, i or 1, defined in I by:

i(t) = t, 1(t) = 1.

(2)

(3)
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We will write ii for 1 * h, that is:

hex, t) = (1 * h)(x, t) =Lhex, r) dr.

Obviously, from eqn (4) it follows:

(4)

hex, t) = hex, t) and hex, t) - hex, 0) = (h h)(x, t), (x, t) E Bx I. (5)

It is also possible that f and g are vectors in IR" vector space in which the inner product is
the standard one. A scalar or tensorial function is in the function class Cp,q on B x I or on
B x (0, to) or on oB x I, if all of the functions f~~)i2.jm' m = 1,2, ... ,p, n = 1,2, ... , q exist
and are continuous on their domains of definition.

By V we understand the Hamilton operator whose expression is given by:

o
V = ei -;-,

uXi
(6)

and by V(), V·() and V x () we mean, respectively, the gradient, divergence and curl of a
field founded between parentheses. Iff is a two order tensor, g and h are tensors of one
order, that is vectors, and q is a scalar function, then from the properties of the V-operator
given by eqn (6), we have the following identities (Gurtin, 1972):

f'(Vgf = V'(f[g]) - (V ·F)· g,

(V· h)q = V '(qh) - h ·(Vq),

V'(gxh) = h'(Vxg)-g'(Vxh),

wheref[g] and g x h (the vector product) are the vectors, respectively, given by:

(7)

(8)

here Bijk being alternating symbols.
A p-order tensor will be written in the following as a letter in boldface, letters in italic

stand for scalar functions and a capital italic letter, with the exception of L, is the notation
for a vectorial function with values in fRIO vector space.

3. DEFINITIONS AND GOVERNING EQUATIONS

Definition I
By an admissible process in B in the dynamical theory of linear nonmagnetizable

piezoelectric micropolar thermoelasticity we mean an ordeal array of functions
e = (u, cp, 8, e, b, E, IC, S, M, S, q, d), with the following properties:

- u, cp :B x I -+ r I> u, cp E C 2
,2 (B x (0, to)), u, iI, ii, cp, cP, cp, Vu, ViI, Vcp, VcP E Co,o (B x I) ;

- 8, S: B x I -+ fR, 8 EC 2,1 (B x (0, to)), S ECO,1 (B x (0, to)), 8, 6, V8, S, SEco,o (B xl);

-E, IC: B x I -+ r2, E, ICE Cl,l (B x (0, to)), E, t, IC, kE CO'O(B x I);

-e,g, b: BxI -+ rl>gECI,O(Bx (0, to)),e, bEC1,1(Bx (0, to)),g,e, V xe, V x bE CO,O(Bxl);

-S, M: B x I -+ r2, S, ME C1,0(Bx (0, to)), S, M, V· S, V· ME CO,O(B x I);

-q,d: Bx I -+ rl,qE C1,0(Bx (0, to)), dE Cl,l (B x (0, to)),q, d, V'qE CO,O(Bx I).
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In the definition above, u and qJ are the displacement and rotation vectors, respectively, 0
is the difference temperature measured from the constant absolute temperature To, e is the
electric field, b is the magnetic flux densiy, E and K are measures of deformation, g is the
temperature gradient, S, M and S are, respectively, the stress tensor, couple-stress tensor
and entropy, q is the heat flux vector and d is the electric displacement vector field.

The components of e need not be related and the set A of all admissible processes in
B is a real vector space provided the addition of two admissible processes and the mul­
tiplication by a scalar of an admissible process are defined in a natural manner.

Definition 2
An external system of causes in B is the ordered array both of real and vectorial

functions of the form lj = (X, Y, r,j, S, m, q, e, b) satisfying the conditions:

-x, Y,j: B x 1---+ 'j, r: B x 1---+ IR, all continuous on B x I;
-S, m, e, 6: BB x I ---+ 'I, q: BB x 1---+ IR, all continuous on BB x 1.

Here, X, Y and j are, respectively, the body force vector, couple-body force vector and
electric current density vector, r is the heat source, sand m are the surface traction and
couple-stress vectors, respectively, possible to be piecewise regular functions, but continuous
in time, and e, 6 are given functions which will be related to e and b.

Definition 3
Bya dynamical nonmagnetizable piezoelectric micropolar thermoelastic process in B

corresponding to the external system of causes lj we mean an admissible process (! E A that
satisfies the following relations and equations:

-the geometrical relations:

g = 'YO, onBxI;

-the constitutive equations:

S = A[E]+B[K]-O,,-e(£:,

d = (£:[E]+D[K]+OG+p[e],

-the Fourier's law:

q = - K[g], on B x I;

-the motion equations:

'Y'ST +X = pO,

'Y' M T +L[S] +Y = J[ii'], on B x (0, to);

(9)

(10)

(ll)

(12)

(13)

(14)

(15)

(16)

(17)

(18)



Dynamical theory of linear nonmagnetizable piezoelectric micropolar thermoelasticity 1497

-the energy equation:

ToS+V'q-r = 0, on Bx (O,to);

-the Maxwell equations (in Gaussian system of units) :

cVxe+b = 0,

cV x b-d = j, on B x (0, to).

(19)

(20)

(21)

Equations V. b = 0 and V. d = 0 will not be considered here because they are consequences
of eqns (20) and (21), of the solenoidal initial conditions and of the local equation of
conservation of electric charge.

In these relations and equations appear new functions and constants with the following
significances and properties:
-A, B, C: jj --+ '4 are continuously differentiable functions on jj satisfying the symmetry
relations:

A[U]'Y = V' A[Y], C[U]'Y = V'C[Y], "IV, YE'2; (22)

-", (, fJ, K, J: jj --+ '2 are continuously differentiable functions on jj having the symmetry
properties:

fJ[U]'V=U'fJ[V]' K[u]'v=u'K[v], J[u]'v=u'J[v], VU,VE'l; (23)

-(£, D: jj --+ '3 and G: jj --+ '1 are continuous differentiable functions on jj;

-L = Cijkei ® ej ® eb P is a strictly positive continuous real function on jj (the material
density), C and c are, respectively, the specific heat of the body and velocity of light in
vacuum;

-rpL, eD, EB and e(£ are conventions of notation for the following tensors:

(24)

All the assertions that follow eqn (21) are known as material properties of the body B.
The functions s, m, q, e, 6 depend on D as follows:

S= ST[D], m = MT[D], q = q . D, e= ex D, 6 = b x D. (25)

4. MIXED PROBLEMS

In this section, in addition to the specification of the body and its material properties,
we assume that the following data are given:

-lj is an external system of causes in B;
-the initial displacement, velocity, rotation, angular rotation, entropy, electric dis-
placement and magnetic flux density fields uo, Yo, rpo, WO, SO, do and bo all continuous on jj ;
-do and bo solenoidal vector fields on jj ;
-the surface dislacement ucontinuous on ~l x I;
-the surface traction spiecewise regular on L2 x I and continuous in time;
-the surface rotation ijJ continuous on ~3 x I;
-the surface couple-stress vector mpiecewise regular on L4 x I and continuous in time;
-the surface temperature fJ continuous on ~5 x I;
-the surface heat flux qpiecewise regular on L6 x I and continuous in time;
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-the function ~ piecewise regular on t 7 x I and continuous in time;
-the function b piecewise regular on Ls x I and continuous in time.

The sets t p , Lp + 1, P E {I, 3, 5, 7}, are dual systems of complementary regular subsets of
oB with the properties: t p U Lp + 1 = oB, Lp n Lp+ 1 = 1>. Moreover, anyone of these sets
may be a piecewise regular surface and also anyone of them could be the empty set.

Definition 4
A mixed problem of the dynamical theory of linear nonmagnetizable piezoelectric

micropolar thermoelasticity is the problem of finding a dynamical nonmagnetizable piezo­
electric micropolar thermoelastic process (2 in B corresponding to the external system of
causes !j in B satisfying:

-the initial conditions:

u(x,O) = uo(x), i:I(x,O) = vo(x), lp(x,O) = lpo(x), q,(x,O) = wo(x),

S(x,O) = So (x), d(x,O) = do (x), b(x,O) = bo(x), X E B; (26)

and

-the boundary conditions:

u(x, t) = ii(x, t), (x, t) E t I X I; sex, t) = sex, t), (x, t) E Lz x I;

lp(x, t) = (P(x, t), (x, t) E t 3 X I; m(x, t) = m(x, t), (x, t) E L 4 X I;

lJ(x, t) = 6(x, t), (x, t) E t s x I; q(x, t) = q(x, t), (x, t) E L6 X I;

e(x, t) = ~ (x, t), (x, t) E t 7 X I; b(x, t) = 6(x, t), (x, t) E Ls xL (27)

Definition 5
We call a solution of the mixed problem a dynamical nonmagnetizable piezoelectric

micropolar thermoelastic process in B, if it exists, satisfying eqns (26) and (27).
Note that numerous special cases of the mixed problem above defined can arise when

one or more of the subsets L[, Lz, ... , Ls is empty. More complicated boundary-initial­
value problems of this theory could also be defined.

Definition 6
An external data system in the dynamical theory of linear nonmagnetizable piezo­

electric micropolar thermoelasticity is an ordered array of functions of the form:

where

(28)

F=(X, Y, - W,J-do), (29)

Sometimes we will say that {2 E A is a solution of the mixed problem in B corresponding to
the external data system L.

Theorem 1
An admissible process {2 E A that satisfies eqns (9)-(25) and (27) is a solution of the

mixed problem in B corresponding to the external data system L if and only if:

(30)

(31)
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1
S+ To V'q= W, (32)

cVxe+b=bo, (33)

cVx6-d =J-do, onBx [0, to), (34)

where

(35)

Proof
To get eqn (30) it must convolute with i of eqn (17) and then use the properties of

convolution (Gurtin, 1972). In the same way eqns (31)-(34) can be proved.

5. A BASIC RESULT

If eE A is a solution of the mixed problem in B corresponding to the external data
system L in eqn (28), it is convenab1e to denote by T and U the following vectors in [RIO.

1 _
T=(s,m'T

o
q,cbxn); U=(u,lp,lJ,e).

The inner product of T and U is :

1 _
T'U=s'm+m'lp+ To qlJ+c(bxn)'e,

while the inner product of functions F and U is defined as:

F' U = X 'u+ Y 'lp- WlJ+(J-do) ' e.

(36)

(37)

(38)

Following eqns (2), (37) and (38), convolutions of T by U and of F by U are given,
respectively, by:

(T* U)(x, t) = J: T(x, t-r)' U(x, r) dr, (F* U)(x, t) = J: F(x, t-r)' U(x, r) dr.

(39)

Lemma 1
If e(·) is a solution of the mixed problem in B corresponding to the external data system

L(·>, a = 1,2, then

where

z·f!(r,p) = zf!·(p, r), (r,p) Elx I, f3 = 1,2,

z·f!(r,p) = f F(·) (x, r)' U(fJ)(x,p) dv+ f T(·) (x, r)' U(fJ)(x,p) da
B U

(40)



1500 1. A. Cnlciun

(41)

Proof
We introduce the functions haP: jj X Ix 1--+ IR, defined by:

hap (x, t,p) = s(a) (x, t) . E(fi)(x,p) +M(') (x, t) . K(fi)(X,p)

-S')(x, t)8(P)(x,p)-d(a)(x, t) . e(P)(x,p). (42)

By using geometrical relations (9)-(11), constitutive eqns (12)-(15), the properties of inner
product defined by eqn (1), symmetry conditions (22) and (23), and expressions (24) of
rpL, eD, EB and e<£:, we can prove that (Craciun, 1994):

haP (x, t,p) = hPa(x,p, t), for any (x, t,p) E jj x Ix I. (43)

Let us find a more simple expression for the functions hap. For convenience, we will suppress
the argument x in hap. Introduction of eqns (9)-(11) in eqn (42), and then the use of
equations (32) and (34), properties (7) of V-operator, the identity S '(rpL) = L[S] . rp, motion
equations (17) and (18), notations (29) and (36), and inner products (37) and (38), leads
to:

haP(t,p) = V .(s(a) (t)[u(P) (p)] +M(a)(t)[rp(P)(p)]

+ ~q(a)(t)8(p)(p)-ci;(a)(t) X e(P)(p) +F(a) (t) . U(P)(p)
To

1 _. P
- pula) (t) . U(P)(P) - J[i,O(a) (t)] . rp<P)(p) - - q(') (t) . g(P) (p) + b(a) ( t) . b( ) (P). (44)

To

Integration over B of identity (43), where haP has expression (44), then the use of the
divergence theorem, relations (25), (36) and (37), proves this lemma.

6. RECIPROCITY RELATIONS

Lemma 1 is very important to establish reciprocity relations in the dynamical theory
of linear nonmagnetizable piezoelectric micropolar thermoelasticity for an inhomogeneous
and anisotropic body B. First, we have:

Theorem 2
If era) is a solution of the mixed problem in B corresponding to the external data system

L('), (J. = 1,2, then:

f«F(l) * U(2»)(X, t) - h(l) (x, t) •bb2) (x)) dv +f (T(l) * U(2))(X, t) da
B M

-Lp(x)(u(l)(x, t)· Ub2)(x) -Vbl)(X)' U(2) (x, t)) dv

-L(J(X)[q,(I) (x, t)]· rpb2)(x) -J(X)[Wbl)(X)]' rp(2) (x, t)) dv

= f «F(2) * U(l))(x, t) -h(2)(X, t)· W)(x)) dv+f (T(2) * U(l))(x, t) da
B M
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- fa p(X)(Ii(2) (x, t) •Ubi) (x) -Vb2) (x) . u(l) (x, t)) dv

- fa (J(x)[q,(2) (x, t)]· rpbl
) (x) -J(X)[Wb2

) (x)] . rp(l)(x, t)) dv. (45)

Proof
In identity (40) we take IY. = 1, f3 = 2, P = t - r and then integrate with respect to r

from 0 to t. Taking into account eqns (2) and (39) we obtain:

i _. 1
(F(l) * U(2) + bel) * b(2) __ ij(l) * g(2) _ pil(l) * U(2) -J[ip(l)] * rp(2»)(X, t) dv

B To

+ r (T(l) * U(2))(x, t) da
JaB

+ r (T(2) * U(l»)(x, t) da.
JaB

(46)

Fourier's law (16), the symmetry of tensor K, relations (2) and (4), and a property of inner
product (1) give:

(47)

From eqns (2), (4) and (5), and properties of convolution (Gurtin, 1972) we get:

(J[ip(l)] * rp(2)) (x, t) = J(x) [q,(l) (x, t)]· rpb2)(x) -J(X)[Wbl)(X)]· rp(2) (x, t),

+(J[q,(l)] *q,(2))(x, t),

(48)

The properties of the convolution, the symmetry of tensor J and eqns (46)-(48) prove eqn
(45).

Remark 1
If initial conditions (26) are homogeneous, then the reciprocity relation (45) becomes:

f(F(l) * U(2))(x, t) dv+ r (T(l) * U(2))(x, t) da
B JaB

= f (F(2) * U(l»)(x, t) dv+ r (T(2) * U(l»)(x, t) da. (49)
B JaB

Making use of notations (36), convolutions (39), inner products (37) and (38), relations
(5) and the Titchmarsh's theorem, we conclude that eqn (49) can be written in the equivalent
form:
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(50)

Remark 2
Reciprocity relations (49) and (50) are very useful in deducing an integral rep­

resentation formula of a solution of the mixed problem.

Theorem 3
If e(» is a solution of the mixed problem in B corresponding to the external data system

L(», IX = 1,2, then the following reciprocity relation holds:

r(pI) * U(2) - i * b(l) * bb2»(x, t) dv+ r (i * T(I) * U(2»(X, t) da
JB J~

= r(p2) * U(I) - i * b(2) * bbl)(x, t) dv + r (i * T(2) * U(I»(x, t) da, (51)
JB J~

where

(52)

Proof
Taking the convolution of relation (45) with function i defined by eqn (3), we conclude,

with the aid of the properties of convolution and notations (35), that eqn (51) is true.

Remark 3
This new reciprocity relation has the advantage that the initial conditions, excepting

that referring to the magnetic flux density, are included in the pseudo-loads (52).

Remark 4
If in eqn (51) the initial conditions are homogeneous, then from the Titchmarch's

theorem, we conclude that eqn (51) becomes eqn (49).

Remark 5
The basic result established in Section 5 implies a uniqueness result for the solution of

the mixed problem defined in Section 4.
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